9,796 research outputs found

    CN rings in full protoplanetary disks around young stars as probes of disk structure

    Get PDF
    Bright ring-like structure emission of the CN molecule has been observed in protoplanetary disks. We investigate whether such structures are due to the morphology of the disk itself or if they are instead an intrinsic feature of CN emission. With the intention of using CN as a diagnostic, we also address to which physical and chemical parameters CN is most sensitive. A set of disk models were run for different stellar spectra, masses, and physical structures via the 2D thermochemical code DALI. An updated chemical network that accounts for the most relevant CN reactions was adopted. Ring-shaped emission is found to be a common feature of all adopted models; the highest abundance is found in the upper outer regions of the disk, and the column density peaks at 30-100 AU for T Tauri stars with standard accretion rates. Higher mass disks generally show brighter CN. Higher UV fields, such as those appropriate for T Tauri stars with high accretion rates or for Herbig Ae stars or for higher disk flaring, generally result in brighter and larger rings. These trends are due to the main formation paths of CN, which all start with vibrationally excited H2* molecules, that are produced through far ultraviolet (FUV) pumping of H2. The model results compare well with observed disk-integrated CN fluxes and the observed location of the CN ring for the TW Hya disk. CN rings are produced naturally in protoplanetary disks and do not require a specific underlying disk structure such as a dust cavity or gap. The strong link between FUV flux and CN emission can provide critical information regarding the vertical structure of the disk and the distribution of dust grains which affects the UV penetration, and could help to break some degeneracies in the SED fitting. In contrast with C2H or c-C3H2, the CN flux is not very sensitive to carbon and oxygen depletion.Comment: New version of paper, correcting too high H2 excitation rates and consequently too high CN column densities. Qualitative conclusions of the paper remain unchanged. Quantitatively, the CN column densities are an order of magnitude lower whereas fluxes decrease by a factor of 3-4. Rings are larger by up to a factor of 2. 13 pages, 19 figures, accepted for publication in A&

    Gravitational vacuum polarization III: Energy conditions in the (1+1) Schwarzschild spacetime

    Full text link
    Building on a pair of earlier papers, I investigate the various point-wise and averaged energy conditions for the quantum stress-energy tensor corresponding to a conformally-coupled massless scalar field in the in the (1+1)-dimensional Schwarzschild spacetime. Because the stress-energy tensors are analytically known, I can get exact results for the Hartle--Hawking, Boulware, and Unruh vacua. This exactly solvable model serves as a useful sanity check on my (3+1)-dimensional investigations wherein I had to resort to a mixture of analytic approximations and numerical techniques. Key results in (1+1) dimensions are: (1) NEC is satisfied outside the event horizon for the Hartle--Hawking vacuum, and violated for the Boulware and Unruh vacua. (2) DEC is violated everywhere in the spacetime (for any quantum state, not just the standard vacuum states).Comment: 7 pages, ReV_Te

    The causal structure of spacetime is a parameterized Randers geometry

    Full text link
    There is a by now well-established isomorphism between stationary 4-dimensional spacetimes and 3-dimensional purely spatial Randers geometries - these Randers geometries being a particular case of the more general class of 3-dimensional Finsler geometries. We point out that in stably causal spacetimes, by using the (time-dependent) ADM decomposition, this result can be extended to general non-stationary spacetimes - the causal structure (conformal structure) of the full spacetime is completely encoded in a parameterized (time-dependent) class of Randers spaces, which can then be used to define a Fermat principle, and also to reconstruct the null cones and causal structure.Comment: 8 page

    From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture

    Get PDF
    The recent interest in ``time machines'' has been largely fueled by the apparent ease with which such systems may be formed in general relativity, given relatively benign initial conditions such as the existence of traversable wormholes or of infinite cosmic strings. This rather disturbing state of affairs has led Hawking to formulate his Chronology Protection Conjecture, whereby the formation of ``time machines'' is forbidden. This paper will use several simple examples to argue that the universe appears to exhibit a ``defense in depth'' strategy in this regard. For appropriate parameter regimes Casimir effects, wormhole disruption effects, and gravitational back reaction effects all contribute to the fight against time travel. Particular attention is paid to the role of the quantum gravity cutoff. For the class of model problems considered it is shown that the gravitational back reaction becomes large before the Planck scale quantum gravity cutoff is reached, thus supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision

    Area products for stationary black hole horizons

    Full text link
    Area products for multi-horizon stationary black holes often have intriguing properties, and are often (though not always) independent of the mass of the black hole itself (depending only on various charges, angular momenta, and moduli). Such products are often formulated in terms of the areas of inner (Cauchy) horizons and outer (event) horizons, and sometimes include the effects of unphysical "virtual" horizons. But the conjectured mass-independence sometimes fails. Specifically, for the Schwarzschild-de Sitter [Kottler] black hole in (3+1) dimensions it is shown by explicit exact calculation that the product of event horizon area and cosmological horizon area is not mass independent. (Including the effect of the third "virtual" horizon does not improve the situation.) Similarly, in the Reissner-Nordstrom-anti-de Sitter black hole in (3+1) dimensions the product of inner (Cauchy) horizon area and event horizon area is calculated (perturbatively), and is shown to be not mass independent. That is, the mass-independence of the product of physical horizon areas is not generic. In spherical symmetry, whenever the quasi-local mass m(r) is a Laurent polynomial in aerial radius, r=sqrt{A/4\pi}, there are significantly more complicated mass-independent quantities, the elementary symmetric polynomials built up from the complete set of horizon radii (physical and virtual). Sometimes it is possible to eliminate the unphysical virtual horizons, constructing combinations of physical horizon areas that are mass independent, but they tend to be considerably more complicated than the simple products and related constructions currently being mooted in the literature.Comment: V1: 16 pages; V2: 9 pages (now formatted in PRD style). Minor change in title. Extra introduction, background, discussion. Several additional references; other references updated. Minor typos fixed. This version accepted for publication in PRD; V3: Minor typos fixed. Published versio

    Gravitational vacuum polarization IV: Energy conditions in the Unruh vacuum

    Full text link
    Building on a series of earlier papers [gr-qc/9604007, gr-qc/9604008, gr-qc/9604009], I investigate the various point-wise and averaged energy conditions in the Unruh vacuum. I consider the quantum stress-energy tensor corresponding to a conformally coupled massless scalar field, work in the test-field limit, restrict attention to the Schwarzschild geometry, and invoke a mixture of analytical and numerical techniques. I construct a semi-analytic model for the stress-energy tensor that globally reproduces all known numerical results to within 0.8%, and satisfies all known analytic features of the stress-energy tensor. I show that in the Unruh vacuum (1) all standard point-wise energy conditions are violated throughout the exterior region--all the way from spatial infinity down to the event horizon, and (2) the averaged null energy condition is violated on all outgoing radial null geodesics. In a pair of appendices I indicate general strategy for constructing semi-analytic models for the stress-energy tensor in the Hartle-Hawking and Boulware states, and show that the Page approximation is in a certain sense the minimal ansatz compatible with general properties of the stress-energy in the Hartle-Hawking state.Comment: 40 pages; plain LaTeX; uses epsf.sty (ten encapsulated postscript figures); two tables (table and tabular environments). Should successfully compile under both LaTeX 209 and the 209 compatibility mode of LaTeX2

    Is Quantum Spacetime Foam Unstable?

    Full text link
    A very simple wormhole geometry is considered as a model of a mode of topological fluctutation in Planck-scale spacetime foam. Quantum dynamics of the hole reduces to quantum mechanics of one variable, throat radius, and admits a WKB analysis. The hole is quantum-mechanically unstable: It has no bound states. Wormhole wave functions must eventually leak to large radii. This suggests that stability considerations along these lines may place strong constraints on the nature and even the existence of spacetime foam.Comment: 15 page

    Unconventional string-like singularities in flat spacetime

    Full text link
    The conical singularity in flat spacetime is mostly known as a model of the cosmic string or the wedge disclination in solids. Its another, equally important, function is to be a representative of quasiregular singularities. From all these of views it seems interesting to find out whether there exist other similar singularities. To specify what "similar" means I introduce the notion of the string-like singularity, which is, roughly speaking, an absolutely mild singularity concentrated on a curve or on a 2-surface S (depending on whether the space is three- of four-dimensional). A few such singularities are already known: the aforementioned conical singularity, two its Lorentzian versions, the "spinning string", the "screw dislocation", and Tod's spacetime. In all these spacetimes S is a straight line (or a plane) and one may wonder if this is an inherent property of the string-like singularities. The aim of this paper is to construct string-like singularities with less trivial S. These include flat spacetimes in which S is a spiral, or even a loop. If such singularities exist in nature (in particular, as an approximation to gravitational field of strings) their cosmological and astrophysical manifestations must differ drastically from those of the conventional cosmic strings. Likewise, being realized as topological defects in crystals such loops and spirals will probably also have rather unusual properties.Comment: Draft. References and comments are welcome. v2. Section 3 is intact, the rest is made briefer and clearer. A couple of references are added. v3. Insignificant correstions. The published versio

    Effective refractive index tensor for weak field gravity

    Full text link
    Gravitational lensing in a weak but otherwise arbitrary gravitational field can be described in terms of a 3 x 3 tensor, the "effective refractive index". If the sources generating the gravitational field all have small internal fluxes, stresses, and pressures, then this tensor is automatically isotropic and the "effective refractive index" is simply a scalar that can be determined in terms of a classic result involving the Newtonian gravitational potential. In contrast if anisotropic stresses are ever important then the gravitational field acts similarly to an anisotropic crystal. We derive simple formulae for the refractive index tensor, and indicate some situations in which this will be important.Comment: V1: 8 pages, no figures, uses iopart.cls. V2: 13 pages, no figures. Significant additions and clarifications. This version to appear in Classical and Quantum Gravit
    • …
    corecore